意甲冠军 由于矩阵乘法计算链表达的数量,需要的计算 后的电流等于行的矩阵的矩阵的列数 他们乘足够的人才 非法输出error
输入是严格合法的 即使仅仅有两个相乘也会用括号括起来 并且括号中最多有两个 那么就非常easy了 遇到字母直接入栈 遇到反括号计算后入栈 然后就得到结果了
#include#include #include using namespace std;const int N = 1000;int st[N], row[N], col[N], r[N], c[N];int main(){ int n, ans, top; scanf("%d", &n); char na[3], s[N]; for(int i = 1; i <= n; ++i) { scanf("%s", na); int j = na[0] - 'A'; scanf("%d%d", &row[j], &col[j]); } while(~scanf("%s", &s)) { int i; for(i = 0 ; i < 26; ++i) c[i] = col[i], r[i] = row[i]; ans = top = 0; for(i = 0; s[i] != '\0'; ++i) { if(isalpha(s[i])) { int j = s[i] - 'A'; st[++top] = j; } else if(s[i] == ')') { if(r[st[top]] != c[st[top - 1]]) break; else { --top; c[st[top]] = c[st[top + 1]]; ans += (r[st[top]] * c[st[top]] * r[st[top + 1]]); } } } if(s[i] == '\0') printf("%d\n", ans); else printf("error\n"); } return 0;}
Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. Since matrix multiplication is associative, the order in which multiplications are performed is arbitrary. However, the number of elementary multiplications needed strongly depends on the evaluation order you choose.
For example, let A be a 50*10 matrix, B a 10*20 matrix and C a 20*5 matrix. There are two different strategies to compute A*B*C, namely (A*B)*C and A*(B*C).
The first one takes 15000 elementary multiplications, but the second one only 3500.
Your job is to write a program that determines the number of elementary multiplications needed for a given evaluation strategy.
Input Specification
Input consists of two parts: a list of matrices and a list of expressions.
The first line of the input file contains one integer n ( ), representing the number of matrices in the first part. The next n lines each contain one capital letter, specifying the name of the matrix, and two integers, specifying the number of rows and columns of the matrix.
The second part of the input file strictly adheres to the following syntax (given in EBNF):
SecondPart = Line { Line }Line = Expression Expression = Matrix | "(" Expression Expression ")"Matrix = "A" | "B" | "C" | ... | "X" | "Y" | "Z"
Output Specification
For each expression found in the second part of the input file, print one line containing the word "error" if evaluation of the expression leads to an error due to non-matching matrices. Otherwise print one line containing the number of elementary multiplications needed to evaluate the expression in the way specified by the parentheses.
Sample Input
9A 50 10B 10 20C 20 5D 30 35E 35 15F 15 5G 5 10H 10 20I 20 25ABC(AA)(AB)(AC)(A(BC))((AB)C)(((((DE)F)G)H)I)(D(E(F(G(HI)))))((D(EF))((GH)I))
Sample Output
000error10000